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We present two finite difference methods for numerical solution of a system of boundary
layer equations for a nonsteady flow of a viscous incompressible fluid, One of these
methods is explicit, while the other is implicit and we find, that, in order to obtain an
approximate solution by the implicit method we must also solve a linear algebraic sys-
tem, It is shown that while the explicit difference method is convergent when some
constraints are imposed on the relations connecting the steps in spatial and temporal
coordinates, the implicit method is convergent without the above constraints, Conver-
gence of these difference methods is proved under the assumption of existence of a
smooth solution of a system of boundary layer equations (see [13).

1, Statement of the problem, Existence of a smooth solution of the system
of boundary layer equations for a plane nonsteady flow of a viscous incompressible fluid
Uy - Uty + DUy = — Py Vidyy, ux + 2, =0 (1.1)
in the region D { 0 < ¢ < ty, 0z <z, 0 <y < oo} with the conditions

Uy =% (2, Y),  ul,_,= 0, vl =03, ul,_,=ul, ¥y (1.2)
lmu (¢, z, y) =U({, ) 1.3)
Y—=00

was proved in [1] under the assumption that either Ty or Xy are not greater than some
constants depending on the parameters of the problem (1, 1) to (1. 3) and under the usual
assumption of the smoothness and compatibility of the functions entering the conditions
(1.2) and (1, 3) . By the Bernoulli's law we have
— Px = l/t+Uer

Solution of the problem (1, 1) to (1, 3) is, in [1], reduced by the change of variables
T=¢, & =x and N=4(Z,x, ) and introduction of a new unknown function
W= Uy , to solution of Equation

VMW W — MW - Pty = 0 1.4)

in the region Q{0 <1< 1y 0L E <y 0L < U (1, £} with the follow-
ing conditions

W, =uy=we(E M), w |i=0 =Uuy=wi (T, M), Wl .= 0 (1.9
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V Wy, — P — Vg = 0 for =0 (1.6)
Function ¥ entering the solution of (1, 1) to (1, 3) can be obtained from
w(t, x, u) 4
8§
¥= w(l, z,s) (1'7)
U

Below we shall give two finite difference methods for numericai solution of the prob-
Iem (1, 4) to (1,6), Obviously, approximate values can be easily obtained for U using
approximate values of W together with the relation of the type of (1, 7) the right-hand
side of which defines the inverse function of ¥, These methods are given in [2]..
Convergence of approximations obtained by the method of straights for the solutions of
steady and nonsteady Prandtl system can be proved in the analogous manner.

We shall assume %y and Xp finite, without loss of generality,

2. Explicit finfte difference method, Leta net whose nodes are given
by the intersections of planes tv = mh, § = I6 and = ka(m, , k= 0,1, 2,..))
where 4> 0 and 0> 0 are some constants, be given in the T, §, 7] -space , We
shall call the nodal points

(mih, Lo, ko), (myk, (I, — 1) 0, ko)
(myk, Lo, (ky — 1) o), (myh, Lo, (& + 1) 06)
the neighboring points of the node ((M1 + )R, £10, A,0). Also, we shall denote
the set of points belonging to () together with its boundaries by * and we shall call the
node belonging to {1” internal if all its neighboring points belong to £} ", The remain-
ing nodes belonging to {2 ! sha1t be called boundary nodes,

The value of the function J at the node (A, £T, A0) will be denoted by F,u1
and we shall construct a finite difference equation approximating (1, 4) for the function

w w — 2w + w w —w
2 f ml, k+1 mik mi, k-1 m+1, [k mik
(vw? . + Mo) = - - —
W, gy = W w, — W,
A mlk m, -1, k mlk ml, k-1
—ke s + Pomix s =0 (21)

at each internal point of {2 'with coordinates ((7 + 1)k, £0, 50), Here ¥ isa
positive constant and M > max {7 | .

We assume for all the boundary nodes of Qf lying on the planes T= 0, §= 0 and
T}= 0 that at these nodes

Woix = Wy (ZG, kﬁ), Wnop = Wy (mk, kd) (2.2)

Ymiy, 1 Ymag, I

VWmie 3 e mip — Yomlo Wiy = 0 (2.3)

while at the remaining boundary nodes of {2 ! denoting them by T}, we assume that
wmzk = O (2-4)
Equations (2. 2) to (2. 4) approximate the boundary conditions (1, 5) and (1,6), Itis
clear that when ., == 0 at all boundary nodes of Qf lying on the plane M= 0,
then the values W,y (with fixed 72 2 0) are uniquely determined by the system of
equations (2, 1) to (2, 4) in terms of W at T=77h,
To show that the values of w,,;, defined by the difference equations (2. 1) to (2. 4)
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at the boundary nodes of Qf converge to the solution of the problem (1, 4) to (1, 6) as
A0 and 0— 0, we shall have to prove some auxilliary assumptions, Everywhere in
the following M; will denote positive constants defined by the parameters of the prob-
lem (1, 4) to (1, 6) and independent of /4 and T, and we shall also use the following
notation

- - 2:m IS -+ Sonl, -
Ly (2) = [V @mii)? -+ s} DML

)

_ Zmaa, ik T Zeak ks Ptk T Fm, 1k J- Cmike T Emil, k-1
h ] pxml}i 5
_ Faat, 11T Fme, o
Amit (z) = ViWmlo s = = Pemtn = Yomio Pmio

Lemma 1, Let function W be given at the nodes of Q' and let it satisfy the

difference equations (2, 1) to (2. 4) and let the functions #° and A be such, that
F<Lw <R, (2.5)

at nodes of Q', for which T=mA, when 1=0 and on T}, when T = (/7 +1)A,
Here 7 =0 is a fixed integer.

We shall assume that L. (F) > and L, (F;) <0 forall /4 and £ cor-
respondmg to the internal nodes of Q 1y1ng on the plane T= (/7 +1)A, that

At (F)>0 and A,y (Fy) <0, for £ correspondmg to the boundary nodes of

of the type ((/+ 1)A, £0, 0) and also that w,, 0-,— 0.

Then, the inequalities (2, 5) will hold at all nodes of Q’ for which T=( +1)A,
provided that h/o® <1/2va” where 0° = max#y° when T =mh,

Proof , We shall first prove that & = W= F =0 when T=(M+ 1)A, By the
previous assumption & =0 when T=7Ah, on I',, andfor § = 0 when T =(7+ 1)A.
By the condition (2, 3) and the inequality A _ . (F) >0

z — 2
m+1, [ mi1, 10 .
Vmlo 5 <0 (2.6)

from which it follows that ~
Zm+1, lo >zm11,ll (2")

For the internal nodes of Q° for which T= (7 + 1)} we have L,,,, @) — L, (F) <0
This means that

z —2z . 4z 2., —z
ml, k+1 mik ml, k-1 m:1, Lk mlk
[V (0, )2 + Mo] o? - ) -
Z .. —Z z —z
mlk m, -1, k mlk mi. k-1
—kc'—'—c—— Jl‘melk—__'_s_“‘ <O
from which we obtain
2v(w, ) +2Ms—p. 0+ kot ) N v (wmlk)2 -+ Ms
fmet, x> \ 1 — 52 h ) 2yt T Pk F
v(w,_. )t Ms Py 1o
mik ! xmik
-+ ( ) h— 5 h) Zonl, k-1 + khzm.l—l, x (2.8)

Since by the previous assumpuon 2k o2 0, it follows from (2, 8) that 2z ,,,. >0
at all internal nodes of (2’ provided that all the coefficients of Z in the right-hand side
of (2. 8) are nonnegative, Coefficient of z ;, , is obviously nonnegative since
M > max ,px . Coefficient of zpy: in (2. 8) will be nonnegative if
LI {
67 2V (W, ) + 2MG — p S + k3 (2.9)
The latier obviously holds for sufficiently small U since by the previous assumption
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h/o® <4va®, Consequently 3.q > 0 at all internal nodes of Q’ when 1= 0 and
on I',. Hence, frc’)m (2, 7) it follows that z,,,., >0 and, consequently, &= —F=20
at all nodes of {2 for which T=(7%+ 1)/,

The inequality W— #1 S0 is proved analogously ,

Lemma 2, At the nodes of {2’ for which T < T, and at sufficiently small A
and U, the estimates

V— o <w <V, (2.10)

hold for the solution W of difference equations (2, 1) to(2.4), Here ¥ and [{ are
functions constructed in the proof of Lemma 2 of [1], Ty is a constant also given in
(1}, functdon » = M, (v + 1) (b + @), h [ 0* < 1/2vb® and b* = max V?,.

At the nodes of {2’ for which § =€, and when A and O are sufficiently small ,
the estimates

V—-yp<wV, (2.11)
hold for the solution W of (2,1) to (2. 4). Here [ and [{ are functions constructed
in the proof of Lemma 3 of [1}, &4 is a constant defined in [1] and

v, =M, (v + 1) (4 9), h ] < 1/2 vb,?, b2 = max V,?

Proof , We shall show that Lemma 1 can be applied to the functions 7= V/~ U,
and Fy = /1 provided that T < To » It was shown in [1] during the proof of Lemma

2, that v, 8V av av
—~1 1 1 L :
VO g~ —Nag TRy <V 8
1%
w1 5;]1 — Py — vt 0 for =0
and
ey O aV av ov
v{(w") o “ég+Px5‘;,“>U in Q

™1 %% —p,— o™ 150 for N=0
under the assumption that T = Ty and under the condition valid for Wt only, that
V<w™1< ;. Hence, provided that % and C are sufficiently small, M is suffici-
ently large (M1 depends on the magnitude of the derivatives of [ in the vicinity of
n=U(7,8), v= (n 4 1) h<1, and the inequalities (2,10) hold for T=mA, the
following difference relations

Ly V=20 >0, Appy (V= 2) >0, L,y (V) <O, Ay V) <0

will be fulfilled.

It shouid be noted that 3 >0 in Q’ and /> 0 everywhere in ()’ except at the sur-
face points M= (T, €),

Inequalities (2, 10) hold when T = 0 and, by (2,2) and according to the properties
of V'and }4, when §=0, If My issufficiently large, then the inequality /~V; Sw
holds also on T, by virtue of the smoothness of [/, the latter being equal to zero when
n=0U( T, §). Since w=0 on I',,and V4 >0, hence, obviowly w S/ on I,
Therefore, applying Lemma 1 consecutively to the cases M =0, 1, 2,... we obtain,
that the inequalities (2, 10) hold at all nodes of Q’ , for which TS Tq,

Inequalities (2. 11) for § S 4 are proved analogously.

Next we shall prove a theorem on convergence of solutions of difference equations
(2.1) w0 (2,49, when A, 00,
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Theorem 1, Let IW be solution of the problem (1. 4) to (1. 6) possessing bounded
second derivatives in £ * and let 1 be the solution of difference equations (2. 1) to
(2.4). Then, for sufficiently small A and O, we have

|W —w | My (h+ o) (2.12)

. 2 .
in £, provided that either tg STy and A/0° <} vb L, or XoSEq and A/ O <
<
< % \)bg .
Proof , Let Xy = wpur — W In accordance with the boundary conditions
(1. 5) and Equations (2, 2) and (2, 4), we have
X=0 X =0, X p=0(h+3s) onTy

Boundary condition (1,6) and smoothness of w imply that
Wm+1, n Wm+1. {3

va,o 5 -—pxmlo——vomlonm: O (h +6)
Therefore, with (2, 3) taken into account, we obtain
Xm+1 u— Xm1-1 10 Wm+1, n Wm+1, o
Vmig G ~— Pomig Xmio TV G Xmig=0 (213)

At the internal nodes of {2” we have, by virtue of the assumption of smoothness of

W 4 , ]
and by (1, 4) Woat, ke1 = 2W i -+ Wt et Wi e =W

v (W, + M) P A —
Wk = W, 1o, x Wtk = Went k1
— ks —= s + Prmik = a = =0(h+o)

which, on subtraction from the corresponding difference equations (2,1), yield

X Ik 1—2X lk+Xml, k-1 XnHl. !k_X ik
[V ()2 + Ms] — - T —
N Xtk = X, 11,0 Xowte — Xmt, 11
— ks s Pamik s +
Went, 501~ 2W i+ Wont, 41
9 W+ W i) 3 X, =0+ (2.14)

Let us now introduce into (2, 13) and (2, 14) a new function

_ Mo max|v0|+vmax]c’)W/6n|+1)
Yo = Xmnt (M4> vminV (v, £, 0)
where M= const > 0, Obviously
Yop=0 Y =0 Y _.=0(h+0) onl, (2.15)
Equations (2, 13) yield
Mo Yo, 0= Yoy 10 (2.18
V¥mig€ S + 4 Y1, 10+ AY guig = O (R +0) 16)
eMe ¢ Wit 1= Wi, 0
A=V 00— A =w 5 — Vguiy

and by virtue of the choice of /4 , we have

[Ay | — 1Az § > 1 (2.17)
for sufficiently small @,
From (2, 14) we find, that, for internal nodes of Q' with coordinates n+ 1)k, 10,
#%0), we have
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>
le,k+1—2Ym?k - Ym!‘ k-1 ¥ mit, Tk Ymn;

3 -

MOy (w02 + Ms)

G h -
—Y . f— -3 Y —Y .
L3 m, -1, k q € mlk ml, k-1
T .
+ BLle, k-1 + Baymzk =0 (h+-0)
where
1 — eMes oM __ 9 1 Mg
By = Paie =g + 19 ) o M)
Ile. k4L 2w mik IV'ml k-1

By =V o + W)

These yield the following expression for Y, 4 pe

2V ()2 -+ 2Ms) e M —p s kst
Yo, =\~ ¥ -

- -M,s 2
2V (w4 Mol (1 —e MO Ry e My (w02 4 Ms)
- 5 Yo+ = Yo, gy +

5%

(248}

v m)ﬂ + Ms) oMoy, Prmiie h
+ kkYm. -1, & + ( = G2 - 5 4

2 [v ()% + Ms] (1 —e M) b )
62

Yo 1%+ BaRY ot gy + BahY e+ RO (R - 9)

Obviously, the sum of all coefficients of ¥ in the first four terms of the right-hand
side of (2, 18) is equal to unity, Since

hi o2 < 4/2vby3, R o* < 1/2vBs%, M > max | pyl

it can easily be confirmed that for sufficiently small O all these coefficients are
nonnegative,

Let us now denote by Py the maximum of | | when T SmA, Then, either
By =B, or max I with TS(M + 1)7;2, is reached when T= (7 + 1)A, If the
latter is found to be the internal node of {2 then from (2, 18) it follows that

Py S Py b MhPyy + Ml (b + 0)

1f maxl ¥ l when T= (7 + 1) A is reached when T = 0 oron T, then from

(2.15),(2. 16) and (2, 17) it follows that

P S Myk 4 0)
Obviousty. /5, = 0, Let us consider the ordinary differential equation
dsldt = Mgs 4 Mg (h 4 o) (2.19)

Clearly, when MAS Ty, then /, does not exceed the solution of (2, 17) with the

initial condition ${0) = My (A+ 0), Hence, when T=T,
max | Yopx | << [My (b + 0) -+ Mg (B 4-0) / M} eM5™ — My (h 4 0) / M,

This means that the inequality (2.12) holds and |W = w | =0 as A, 0~0, which

proves the theorem ,

3, Implicit finite difference method, Consider, inthe T, §, 7)-space,
a net with nodes defined by the intersection of planes
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T=mh, t=Ih, M =: kh, l=:const >0, my k=04, 2,
We shall call the nodes
((my 4+ 1) b, Lk, (k 4 1) R), ((my + 1) L il (g — 1) B}
(msh, Lk, kR, (fmy 1) 1. (I, — A5 h, Ky B)

the neighboring nodes of the node ((m, 4 1) &, Lk, kk)

As in the previous difference method, we shall call the node belonging %o (2" internal
if all its ne1ghbor1ng nodes belong to Qf (i. e, to the closure of Q) The remaining
nodes of ()’ shall be called boundary nodes, We shall denote the value of f* at the
point (mA, A, AW) by f.,. and we shall construct for each internal node of 0 with
coordinates (7 + 1)h, LA, Bh) a corresponding difference equation for W, approx-
imating (1. 4)

w — 2w +-w N
(wmlk)2 +‘ j"[h]. mil, |, k+1 ‘m}:;., ik m+l, {, k _1_

Wit Ik — Ymig Wit, k™ Ym+, 1-1, k Wyt k™ Ymaa, 1, k-1
- h — kh h + Py h =0
M = const > max | p, | (3.1)

Equations at the boundary nodes

Wo = wy (Lh, kh), Wor = w; (mh, kh), Woe, =0 on T (3.2)
correspond to the boundary conditions (1. 5) and l‘h denotes ihe nodes of (2 ! outside
the planes T=0, §=0 and M = 0. Expression

w, —w
m+1, [1 m+1, 10 .
Vimlo h = Pamio ™ Yomi¥mio = 0 (3.3)

corresponds to the boundary condition (1, 6) ,

Again, before proving the convergence of solutions of the difference system (3, 1) to
(3. 3) to the solution of the problem (1.4) to (1.6) when A—0, we shall have to estab-
lish some auxilliary propositions, First we shall show that the equations of the difference
system (3, 1) to (3, 3) have unique solutions in w1, ;x under the assumption that all
Wik, are known and that 72 = 0 is a fixed integer, This means that the difference
equations (3, 1) to (3, 3) can be solved in successive steps in the T-direction, i,e, for

Mm=0,M=1, Mm=2, etc

Lemma 3. Let 7 20 be fixed and wpy == 0 forall £, Then, the system
(3.1) 1 (3, 3) will have a unique solution with respect to Wm4q,1k, provided that all
values of Woik, 1.€. values of w at all nodes for which T=77HA, are known ,

Proof , Since(83,1) to(3.3)is, for fixed 7 , a linear algebraic system in
Wnayp LIS sufficient to show that it can have only one solution,

Assume, that for some /772 , the system (3.1) to (3. 3) has two solutions in w,, 4 1 and
let us denote their difference by §,,,., - This difference satisfies Equations

Sm+1. ok = 0, Sm+1, k= 0 on Fhv Sm+1, i1 Sm+1, o = 0 (3-4)
At each internal node of {0 for which T= (/7 + 1)#, we have

Sm+1, 1L, k+1 2Sm+1, 13 + S—m+1, I, k-1
[V (wnik)* + M) 5 -
— S

Sm+1, Ik h Smu, Ik m+L, I-1, k m+1, Ik 7 s
- h —k h + Pami h

m+1, I, k-1 =0 (35)
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If S 1. e == 0, then there exists a point, at which the modulus of Sm“ g assumes
ns greatest value, By (3.4), |Spqqt, xl should be reached at some internal node of
O with coordinates (7 + 1A, £1A, AR ). Multiplying (3. 5) by Sminir We

obtain Y
m*l Lok P mer, b k+1

1 [v( Wl k, ) - Mh} I3 - —[¥ (wml‘kl)‘! + Mh"me.r_;;‘h] x
S, Lk S m-1, Ly, ky-1 bk St Lks Smﬂ. 81, ky S
e B h mil LR T

{Sm+1, I k,}z
h

Obviowly, all the terms contained in the left-hand part of this equation should be
nonpositive, while the term (S, 1, ,,x,)?/® will be negative, This is impossible
unless S LIk = 0 , which completes the proof,

Let us now introduce the notation

, iy, 1, 1 a2 —
Am(z)ztv (wmzk)%MhJ e

__ Tm4l, ™ ___ kk o, m—ﬂ. i1,k L P zm-i»l, e zmﬂ, {, k-1
h R ¢ Femik h )

Lemma 4 . Let I given at the nodes of o’ , satisfy the difference equations
2.1) to (3, 3) and let the functions $ and ‘I>1 be such, that

DD (3.6)
at the nodes of {1/ for which T = Mm%, and also when £ =0 and on T} . when
T=(M + 1Y, Here MZ0 isa fixed number,

Assume now that at all internal nodes of {1 ! for which 7T =(7 + 1)A

Apgr (@) >0,  Anp(®) <0

at all boundary nodes of the plane 7= 0

7"m+1 ((D) > 01 xm+1 (q)x) < 0
and let 14 == 0 no matter what the value of £ is, Then the inequalities (3, 6) hold
also for T=(m + 1) A,
Proof . We shall first show that Z=w ~ 220 when T=(m+ 1) A, By the
condition of the Lemma £ =0 when T=/A, andalso when € =0 andon [},. By
(3.3) and the condition Ag+3(®) > 0, we have

Zm+1, 1) S Zm+1, g 0
Vi ie A <

from which it follows that
Z7n+1. Io> Zm+1. 5N (3'7)
For the internal nodes of {2° lying on the plane T = (/7 + 1), we have

Ay (0) — A (D)<
which means, that for these nodes
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Z Z —2Z

Zm+1. e~ 1,1, k+1 m:1, Ik Ik
— [V ()? + M) e — — (3.8)
Zm+1, [ Zml. k-1 Zm+1, Ik Zm+1. -1, k
— [V (W) + Mh — px'mlkh] 7 — kh 7 <0

If Z, 4 ° assumes negative values, then the negative minimum of Z, 4y 1 should
be achieved at some internal node of Qf , since Z20 when € =0 and on Fh , and
the inequality (3, 7) holds, All the terms of the left-hand side of (3, 8) considered for
the point at which the smallest negative value is assumed are nonnegative, and at least
one of them is posmve which is impossible. Consequently, Z_ t1x >0 everywhere
at the nodes of Q , which was to be proved, In the analogous manner we show that
w- 8,50 in Q' when T =(7 + 1)A.

Lemma 5 , Lemma 2 holds for the solution % of difference equations (3, 1) to
(3.3), i.e, with A sufficiently small, inequalities (2,10) when T S T, and inequalities
(2,11) when £<&,, hold.

Proof of this Lemma is analogous to that of Lemma 2,

Now we shall prove the convergence of the difference system (3, 1) to (3, 3). Here 4
will denote positive constants defined by the parameters of the problem (1, 4) to (1.6)
and independent of

Theorem 2 , Let W be the solution of (1, 4) to (1.6) possessing bounded second
derivatives in Q' and let W be the solution of difference equations (3. 1) to (3. 3).
Then, at the nodes of Qf we have, for sufficiently small A,

|W—w|< K h (3.9)
provided that either £4 < Ty or Xo ™5, where T and &g are positive constants

definedin Lemma 2,
Proof , Letusdenote wyy - Wyur by Xmig. According to (1. 5) and (3.2) we

have Xog =0, Xpmox = 0, Xpix = O (k) only (3.10)
Boundary conaition (1.6) and assumption of the smoothness of W imply
Wmu 11‘_Wm+1 lo
YW A — Pxmio™" Yomto Wmio = O (B)
Hence, taking (3, 3) into account, we obtain (3.11)
Xm+1, S Xm+1, 0

X o =0 (k)

T/Vm+1. n Wm+1. 10
mio

Ve 3 + (" Vymip TV R
for all boundary nodes lying in the plane M= 0, For internal nodes of Q' we have, by
(1, 4) and the smoothness of #

Wm+1 I, k+1 7 2I/Vmﬂ. lk + Wm+1, !, k-1

v (W )2+ MR - B -
VVrrHl | Wmlk W]7n+1. 1L n]mﬂ. -1, &
— : — kh 7 +
h
"Vmﬂ. Ik ™ IVm+1, L k-1
+ Poemik h =0(h)

which, together with (3,1), yield
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Xmﬂ i, k 1‘2Xm+1 113 +Xm+1 1, k-1 qu 1 — X 43
19 (o Mpj—l L k1T -
Xm+1, 1 an-.l-l, i-1, k Xm+1, k™ Xm+1, 1, k-1
— kh i “+ Pemik 7 +
WmJ.]. I, k41 - 2Wm+1 Ik + Wm+1 I k-1
+ e V W+ Wongge) Xy =0 (R) (3.12)

Let us now introduce into (3,10), (3,11) and (3, 12), a new function

Y gy = Xy e MK M>0, Ky >0)

where My is defined in the proof of Theorem 1 and the constant A5 is defined below,
Equations (3, 11) yield
Y

Y —
AL T2t 3 MULED g Mk +CiY pauy, 10 O mio = 0 (h) (3.13)
-Mh g w —W
e _ ~K:h m+i, I1 m+1, I
Cl:"""mzo'—'}'{"—' . Cy = ¢~ *'* (’”omlo“*"" % )

For internal nodes of {1’ (3.12) give

Ym+1. Lk+1 2Ym+1. ik + Ym+1, L k-1

[V (W) + Mh] e~ Mo B -
R Ym+1. (L3 lek —kh Ym-u, 143 ’"hymﬂ, -1, k +
(1 —e MM\ Yoir, k= Yomir, 1, k1
+ (pxmlk —2[v (wyyy)* + Mh] h ) h Tt
+ Dlqu—l. Lk + Dgymlk + Dstﬂ. Lk-17 O (h) (3-14)
R
Di=——p
Dy = (W + Won) Wit 1, k1 — 2Wn;;1. et Wi, 1k o Kah
1 — (Mah M o 4- e~ Mt
Dg = prppy Tk + [V (W) + MA] ht

which can be written as

qu, 44 “““Ym+1, I, k+1

= [V (o) 4 M) = — 1% (g )? -+ MR] M —
Y —Y
Mgt 1, i 2L k-1
— Donigh 4 2 IV (@ ® + MR (1 — ¢ Maly) T 1 _
—reyn Yot e — Yot Yinet, 6= Yoner, 11, &
e — kR h — + DYy, et

+ Dzymlk + Daymﬂ. [ O (k) (3.15)
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Assume that the modulus of [ assumes its greatest value at the point £~ whose coor-
dinates are (77 + 1)A, £1h, A ). 1f Plieson [, , on the plane 7= 0 or on
€ = 0, then from (3, 10) it follows that | Ym,—(»—l,l,.k. | <Kgh If P lieson 7= 0 then,
by virtue of the choice of My it follows from (3,13) that |Y, . | <K& for suffi-
ciently small A, since 101 I— , Cs ‘ >1 if A is sufficiently small ,

If, on the other hand, 2 is an internal node of Q| then first four terms of the right-
hand side of (3, 15) considered at the point / are of the same sign coinciding with the
sign of the fifth term, provided that

¥ (Wing)? 4 ME) € MM — poieh 4 2 v (e -+ MA) (1 — M >0 (3.16)

Inequality (3, 16) will be fulfilled for sufficiently small 7, since by the previous
assumption Y > max [le . Hence, atthe point P

(D] = 1Dy | = IDg ) 1Y iy ] <K (3.17)

Let us choose A large enough to fulfil the inequality

. il
K; > v(max V, 4 max W) max 1 Y

+ max | Pl M; - max Vi2M3v

Then, the coefficient of Ym.-{—l.l, X in the left-hand side of the inequality (3.17) is
positive and | Y, 1y 5 IS Kgh. Consequently, for sufficiently small A the inequality

(3. 9) holds for w— W, which completes the proof,

4, Construction of approximate solution of the problem (1,1)
to (1,8) , We can find approximate values of the function & (¢, X, V) defined
by the system (1,1) to (1, 3) , using the approximate representation of the inverse of
W(t,x, V) interms of wyy, with fixed ¢ and Xx

[u/h] i
y= go w(t, z, kh) (4.1)

which, together with (1.7), readily yields the result that in the region 2 when
YSYo < and when either Lo < Ty or 2o < &gy | Uge — u | << Kb

Here K- dependson VYo , function u,,, isdefined by (4.1) and W is the solution
of difference equations (3, 1) to (3, 3). Estimates obtained for wy,;; in Lemma 5
should be taken here into account together with the estimates for # obtained in [1] in
Lemmas 2 and 3, Analogous statement is correct for solutions of the difference system
(2.1) o (2, 9.
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